skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "McCormack, John"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Seasonal migration is highly labile from an evolutionary perspective and known to rapidly evolve in response to selective pressures. However, long‐distance migratory birds rely partially on innate genetic programs and may be constrained in their ability to alter their migratory behavior. We take advantage of recent advances in our ability to genotype historical DNA samples to examine the temporal stability of migratory connections between breeding and nonbreeding populations (i.e. migratory connectivity) and population‐level nonbreeding distributions in the Wilson's warblerCardellina pusilla, a long‐distance migratory songbird. By assigning historical and contemporary samples collected across the nonbreeding range to genetically distinct breeding clusters, we suggest that broad‐scale population‐level nonbreeding distributions within this species have remained largely consistent within Mexico from the mid‐1900s to the present day. These findings support the idea that the nonbreeding distributions of long‐distance migrants may remain stable over long time scales, even in the face of rapid environmental change. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  2. Abstract Hybrid zones can be studied by modeling clines of trait variation (e.g., morphology, genetics) over a linear transect. Yet, hybrid zones can also be spatially complex, can shift over time, and can even lead to the formation of hybrid lineages with the right combination of dispersal and vicariance. We reassessed Sibley’s (1950) gradient between Collared Towhee (Pipilo ocai) and Spotted Towhee (Pipilo maculatus) in Central Mexico to test whether it conformed to a typical tension-zone cline model. By comparing historical and modern data, we found that cline centers for genetic and phenotypic traits have not shifted over the course of 70 years. This equilibrium suggests that secondary contact between these species, which originally diverged over 2 million years ago, likely dates to the Pleistocene. Given the amount of mtDNA divergence, parental ends of the cline have very low autosomal nuclear differentiation (FST = 0.12). Dramatic and coincident cline shifts in mtDNA and throat color suggest the possibility of sexual selection as a factor in differential introgression, while a contrasting cline shift in green back color hints at a role for natural selection. Supporting the idea of a continuum between clinal variation and hybrid lineage formation, the towhee gradient can be analyzed as one population under isolation-by-distance, as a two-population cline, and as three lineages experiencing divergence with gene flow. In the middle of the gradient, a hybrid lineage has become partly isolated, likely due to forested habitat shrinking and fragmenting as it moved upslope after the last glacial maximum and a stark environmental transition. This towhee system offers a window into the potential outcomes of hybridization across a dynamic landscape including the creation of novel genomic and phenotypic combinations and incipient hybrid lineages. 
    more » « less
  3. Abstract Hybrid zones are natural experiments for the study of avian evolution. Hybrid zones can be dynamic, moving as species adjust to new climates and habitats, with unknown implications for species and speciation. There are relatively few studies that have comparable modern and historic sampling to assess change in hybrid zone location and width over time, and those studies have generally found mixed results, with many hybrid zones showing change over time, but others showing stability. The white‐throated magpie‐jay (Calocitta formosa) and black‐throated magpie‐jay (Calocitta colliei) occur along the western coast of Mexico and Central America. The two species differ markedly in throat color and tail length, and prior observation suggests a narrow hybrid zone in southern Jalisco where individuals have mixed throat color. This study aims to assess the existence and temporal stability of this putative hybrid zone by comparing throat color between georeferenced historical museum specimens and modern photos from iNaturalist with precise locality information. Our results confirm the existence of a narrow hybrid zone in Jalisco, with modern throat scores gradually increasing from the parental ends of the cline toward the cline center in a sigmoidal curve characteristic of hybrid zones. Our temporal comparison suggests that the hybrid zone has not shifted its position between historical (pre‐1973) and modern (post‐2005) time periods—a surprising result given the grand scale of habitat change to the western Mexican lowlands during this time. An anomalous pocket of white‐throated individuals in the northern range of the black‐throated magpie‐jay hints at the possibility of prehistorical long‐distance introduction. Future genomic data will help disentangle the evolutionary history of these lineages and better characterize how secondary contact is affecting both the DNA and the phenotype of these species. 
    more » « less
  4. Abstract Genomic data continue to advance our understanding of species limits and biogeographic patterns. However, there is still no consensus regarding appropriate methods of phylogenomic analysis that make the best use of these heterogeneous data sets. In this study, we used thousands of ultraconserved element (UCE) loci from alligator lizards in the genus Gerrhonotus to compare and contrast species trees inferred using multiple contemporary methods and provide a time frame for biological diversification across the Mexican Transition Zone (MTZ). Concatenated maximum likelihood (ML) and Bayesian analyses provided highly congruent results, with differences limited to poorly supported nodes. Similar topologies were inferred from coalescent analyses in Bayesian Phylogenetics and Phylogeography and SVDquartets, albeit with lower support for some nodes. All divergence times fell within the Miocene, linking speciation to local Neogene vicariance and/or global cooling trends following the mid-Miocene Climatic Optimum. We detected a high level of genomic divergence for a morphologically distinct species restricted to the arid mountains of north-eastern Mexico, and erected a new genus to better reflect evolutionary history. In summary, our results further advocate leveraging the strengths and weaknesses of concatenation and coalescent methods, provide evidence for old divergences for alligator lizards, and indicate that the MTZ continues to harbour substantial unrecognized diversity. 
    more » « less
  5. Abstract The impact of preserved museum specimens is transforming and increasing by three-dimensional (3D) imaging that creates high-fidelity online digital specimens. Through examples from the openVertebrate (oVert) Thematic Collections Network, we describe how we created a digitization community dedicated to the shared vision of making 3D data of specimens available and the impact of these data on a broad audience of scientists, students, teachers, artists, and more. High-fidelity digital 3D models allow people from multiple communities to simultaneously access and use scientific specimens. Based on our multiyear, multi-institution project, we identify significant technological and social hurdles that remain for fully realizing the potential impact of digital 3D specimens. 
    more » « less
  6. Abstract AimIntroduced species offer insight on whether and how organisms can shift their ecological niches during translocation. The genusAmazonaoffers a clear test case, where sister species Red‐crowned (A. viridigenalis) and Lilac‐crowned Parrots (A. finschi) have established breeding populations in southern California following introduction via the pet trade from Mexico where they do not coexist. After establishment in the 1980s, introduced population sizes have increased, with mixed species flocks found throughout urban Los Angeles. Here, we investigate the differences between the environmental conditions of the native and introduced ranges of these now co‐occurring species. LocationSouthern California and Mexico. MethodsUsing environmental data on climate and habitat from their native and introduced ranges, we tested whether Red‐crowned and Lilac‐crowned Parrots have divergent realized niches between their native ranges, and whether each species has significantly shifted its realized niche to inhabit urban southern California. We also analysed data from Texas and Florida introductions of Red‐crowned Parrots for comparative analysis. ResultsThere are significant differences in the native‐range niches of both parrot species, but a convergence into a novel, shared environmental niche into urban southern California, characterized by colder temperatures, less tree cover and lower rainfall. Texas and Florida Red‐crowned Parrots also show evidence for niche shifts with varying levels of niche conservatism through the establishment of somewhat different realized niches. Main ConclusionsDespite significant niche shifts, introduced parrots are thriving, suggesting a broad fundamental niche and an ability to exploit urban resources. Unique niche shifts in different U.S. introductions indicate thatAmazonaparrots can adapt to diverse environmental conditions, with cities offering a resource niche and the timing of introduction playing a crucial role. Cities can potentially serve as refugia for threatened parrot species, but the risk of hybridization between species emphasizes the need for ongoing monitoring and genetic investigations. 
    more » « less